新聞分類

國內業務:18765127718

國際業務:15266071783

售后服務:15163602093

人力資源:18953651612

業務郵箱:jnzhang@winabattery.com

公司地址:壽光東城工業園(濰高路與羊田路交匯處向北2公里路西)

行業新聞

鋰電池漿料制備技術及其對電極形貌的影響(3)

分類  行業新聞    發布時間:  2018/05/04

文獻《Conveying Advanced Li‐ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills[J]. Advanced Energy Materials》基于最理想的電池極片微觀結構特征,綜述了目前工業生產上先進的鋰離子電池電極漿料的制備技術,及其對電極形貌和性能的影響。筆者翻譯本文總共分成4個部分,本文為第三篇。

6、漿料制備投料順序的影響 

據報道,由相同的活物質,導電劑和粘合劑制備的電極的性能與電極漿料的混合投料順序顯著相關,這在具有各種活物質,導電劑和粘合劑的不同的正、負極漿料中得到證實,一些實例如圖9所示。如果使用不粘稠的溶劑開始攪拌過程(粘結劑多步攪拌中的第二步和第三步添加),并逐漸加入固體組分,數值模擬證明了多步驟攪拌的優點(參見圖10a)。圖10b表明,對于不同形狀和尺寸的活物質顆粒,一步法攪拌制備的電極比兩步和多步制備的電極電導率更低。同時,所有的兩步和多步攪拌工藝的電極都具有相似電導率。



 

電極的電導率和粘合劑分布取決于活物質的形狀和尺寸,更大程度上取決于攪拌工藝變化。與一步法相比,多步法2(multi-step 2)增加了由小多面體活物質顆粒制成的電極的電導率(1.35倍)。同時,如果多面體狀活物質變為立方體狀活物質,制備工藝相同時電極的電導率也會增加(1.30倍)(見圖10b)。這說明,為了正確比較不同工藝的結果,討論漿料混合順序的影響時,AM顆粒的形狀也要考慮在內。漿料制備步驟順序的改變導致制備的電極形態改變,這又會影響電極性能,這種工藝改變可以用作電極性能優化的有力方法。電極層形貌改進包括活物質與導電劑分布狀態的變化,活物質/導電劑與粘合劑分布狀態的變化,電極層孔結構的變化,及其綜合變化。此時,特別要注意粘合劑溶解度和粘合劑與分散粉末表面的相互作用對漿料組分的分布狀態起關鍵作用。因此,對于不同的漿料(不同的導電劑,不同的活物質,不同的粘合劑和不同的溶劑),最佳攪拌工藝也是不同的。

 



文獻報道證明了漿料制備步驟序列變化的潛力。漿料組分為石墨粉(活物質),導電劑和PVDF,NMP用作漿料溶劑時,采用兩種不同的步驟順序制備漿料:第一種方法為將活物質和導電劑在NMP中分散,然后將粘合劑溶解在制備好的活物質/導電劑/NMP漿料中;另一種方法是將導電劑分散到預先制備好的PVDF/NMP溶液中,然后將活物質粉末分散到導電劑/PVDF/NMP漿料中(圖9b)。作者將這兩種漿料制備的負極的循環壽命差異與這些電極層的機械性能的差異關聯起來。由兩種漿料制備的電極具有相似的導電性,但是具有不同的楊氏模量,并且第二種方法中制備的電極的楊氏模量較低(電極層剛性較差)。由于PVDF/NMP溶液的粘度明顯高于NMP溶液的粘度,所以粘性的PVDF/NMP滲透到活物質團簇內并在活物質漫延,這就出現了問題。 

這一假設與在旋轉葉輪粉末分散過程中的規律一致,剪切速率越大,分散粉末團簇的最終尺寸越小。全局剪切速率G可由式(1)表示: 

                                   (1) 

其中,T代表葉輪轉矩,ω代表葉輪的角速度,μ代表動態粘度,V代表聚集體的體積。因此,粘度越小,剪切速率越大。如果溶劑的粘度高,則在干燥時難以將活物質顆粒分開,并將粘結劑分散到所有活物質顆粒的表面。結果,PVDF分子主要與外部活物質顆粒表面接觸,干燥后聚合物鏈沒有沿所有活物質顆粒表面延展。因此,粘合劑不會固化在孔內,并且大部分在顆粒外部糾纏在一起,因此電極機械拉伸性能有限,并伴隨著活物質鋰化/脫鋰過程的應力。因此,電極層也顯示出很大的剛度。與此相反,將活物質/導電劑分散在低粘度NMP的過程中,粉末團聚體較小,然后在PVDF添加時,粘合劑自由擴展到活物質顆粒表面上,粘合劑分子浸入活物質孔隙內。因此,粘合劑分子與活物質顆粒具有更多的接觸,留下額外的自由空間吸收拉伸負荷,和在連續的鋰化/脫鋰循環時產生的應力負荷。另有報道稱,PVDF分子在漿料制備之后形成相對較大和分離的網狀線,漿料靜置七天后,粘合劑沿著漿料擴散(參見圖11)。這說明PVDF均勻分布是一個緩慢的過程,聚合物實際上在攪拌過程中不能均勻分布在所有的粉末表面。



 

Lee等人的工作研究了其他活物質組分,作者研究了漿料制備步驟順序對LiCoO2 /導電劑/PVDF電極性能的影響(NMP用作漿料溶劑)。比較了兩種不同的制備步驟順序:第一種方式將干粉預混合的活物質/導電劑粉末分散在PVDF/NMP溶液中,而第二個種方式將相同的活物質/導電劑混合物分散在較稠的PVDF/NMP溶液中(PVDF+NMP總體積的2/5),然后用剩余的NMP稀釋得到的漿料(分三步,每步加入NMP總體積的1/5)。第二種方法實現了更好的性能(見圖9a)。作者認為通過首先將活物質/導電劑混合物分散在較稠的PVDF/NMP溶液中實現了更均勻的導電劑分布,使電極導電性增加。在制備其它氧化物類活物質, Li2.2V3O8 /CB/PMMA[乙酸乙酯+碳酸亞乙酯]漿料的情況下,具有類似的效果(如果漿料制備從較稠的溶劑開始,即如果從一開始就添加了粘合劑,則具有更好的電極性能)。 

因此,綜上所述可以得出結論,制備步驟順序的變化會根據組分的性質而具有不同的效果:


?在石墨/ 導電劑/ PVDF漿料的情況下,如果首先使用較稀的溶劑進行分散,則會形成更好的粘合劑分布結構。


?在[Li1.2V3O8或LiCoO2] / 導電劑/ [PVDF或PMMA]漿料的情況下,如果起始溶劑較稠,則會形成更好的粘合劑分布。 

由于不同的形貌變化,電極性能得到提升,這存在兩種解釋:第一,假設電極電導率的提高(因為更好的活物質/導電劑混合)是性能提升的原因,當電流密度較高時,其效果是最顯著,如圖9a所示。第二,形貌改變與電極機械性能的改善有關,而電極電導率沒有顯著變化。由制備步驟的順序變化引起的兩種類型的電極性能改變取決于漿料中活物質-導電劑-粘合劑-溶劑相互作用,不僅與活物質,導電劑和粘合劑本身性質有關,還可以取決于特定的活物質 / 導電劑/粘合劑組合。 

目前,先將漿料組分進行預先干粉混合(活物質/導電劑、活物質/粘結劑,以及活物質/導電劑/粘合劑),然后將這些混合粉體分散到溶劑(或粘合劑溶液)中,這成為一種趨勢。許多研究報道干混工藝,再加入溶劑(或粘合劑溶液)和混合粉末的預先分散往往對電極最終性能產生積極的影響。 

通過預先干混,改善電極性能有兩個途徑: 

(1)AM(活物質) / CB (導電劑)/粘合劑混合粉體的干混。這種方法的突出特點是PVDF粉末對CB的親和力明顯高于PVDF對AM的親和力,因此實際上首先形成了CB / PVDF混合相,然后AM顆粒團聚體分散并被導電粘合劑混合相分隔開(見圖12a)。在進一步的粉末分散中,漿料維持圖12a所示的結構即分散AM顆粒被CB /粘合劑混合物分隔開,并且干燥后仍然保持如此形貌。這使電極具有更高的導電性和更好的其他性能。AM / CB /粘合劑混合物的干粉混合分散,所制備的電極比高能分散電極性能更好(參見圖12b),因為能量太高會破壞的干混混合物的精細分布結構。

 



(2)第二個方法是AM / CB(無聚合物粘合劑)的干混,然后將所得混合物分散到粘合劑溶液中。以這種方式制備的電極的性能與AM和CB的混合密切相關,它們增加了AM顆粒的電子傳導通路。然而,AM / CB的相互接觸可能具有復雜的特性。據報道,在AM / CB的高強度混合過程中,AM顆粒被薄碳層覆蓋,類似于碳涂層,由化學鍍碳形成,示例見圖13。通常,這種電鍍基本上改善了正極性能(大部分正極AM具有低導電性)。然而,在CB量不足的情況下,由于形成圖13中所示的AM / [CB層] / [粘合劑層]分層結構,電極的導電性也可能很低。



 

干混后電極性能的改善與AM電子通路的增加有關,這是AM / CA混合更加均勻所致,較小的CA顆粒在較大AM顆粒表面均勻分布。這種電子通路的改善與混合順序模式有關,但這種關系及其復雜。而且,低能量混合的效果不顯著(例如,報道稱強力球磨混合器比缽和杵手動研磨混合更有效),超強混合通常也具有負作用,這是因為AM / CB原料粉末存在CB團聚,漿料制備過程中由AM / CB粉末“過共混”導致AM團聚(見圖14)。



 

值得注意的是,AM / CB粉末電導率的增加不能保證提高最終電極性能。高能量粉末攪拌機(Nobilta)所制備的AM / CA粉末混合物具有比低能量旋轉鼓式攪拌機更好的導電性,但是用Nobita混合的AM / CB粉末所制備的電極的導電性明顯低于旋轉鼓式攪拌機處理的AM / CB粉末所制備的電極(圖15)。 另外,只有當所采用的混合程序適合特定的AM / CB性質時,干粉預處理才有助于獲得更好的CA分布和電極性能,否則,預干混反而可能損害最終的電極性能。




红牛彩票-首页